
- Ophthalmology Times: June 1, 2021
- Volume 46
- Issue 09
IPL offers glaucoma biomarker for early-stage disease
Visible-light optical coherence tomography proves valuable in studies.
Reviewed by Zeinab Rozita Ghassabi, MD; and Joel Schuman, MD
A sublayer of the inner plexiform layer (IPL) holds promise as a potential biomarker in efforts to detect early glaucomatous changes, according to Zeinab Rozita Ghassabi, MD, a postdoctoral research fellow, and Joel Schuman, MD, Department of Ophthalmology, New York University Langone Health, New York.
Ghassabi related that animal studies have determined glaucomatous changes start in dendrites and then in the ganglion cells and axons.
Related:
Visible-light
“Vis-OCT has higher axial resolution compared with conventional OCT,” she explained.
Conventional systems are limited to axial resolutions of about 3 to 4 μm in contrast to vis-OCT with an axial resolution in vivo of about 1.8 μm in air and 1.3 μm in eye.
Ghassabi and colleagues tested the potential of the IPL sublayers as glaucoma biomarkers using vis-OCT compared with conventional biomarkers such as the retinal nerve fiber layer and the ganglion cell layer.
Related:
To do this, they used a prototype instrument, the Aurora X1 vis-OCT system (Opticent Inc) using a 3-D speckle-reduced raster scanning protocol focused on the superior fovea in 9 healthy subjects and 6 patients with glaucoma.
Results
The healthy subjects (average age, 47 years) and
Respective mean deviation values were –1.55 and –19.4 decibels, a difference that also reached significance (P = .002, Wilcoxon test).
Vis-OCT showed that the IPL has 3 sublayers; in subjects who were healthy and in those with glaucoma, the total IPL values were 39.44 and 35.5 μm (P = .002, linear regression adjusted for age), respectively. The thickness of sublayer 1 did not differ between the 2 groups.
Related:
The thickness of sublayers 2 and 3 differed significantly: sublayer 2, 17.17 and 14.36 μm (P = .003, linear regression adjusted for age); sublayer 3, 11.29 and 10.29 μm (P = .045, linear regression adjusted for age), Ghassabi noted.
Analysis showed a strong correlated with the thickness of sublayer 2 and the mean deviation.
“The IPL is a layer of synapses between the bipolar, amacrine, and retinal ganglion cells and can be divided into on and off sublaminae and 5 strata,” Ghassabi said. “The 5 layers that were visible on vis-OCT images were correlated with 5 morphologic strata, S1 to S5.”
The patients with glaucoma had moderate and advanced disease. The thinning of sublayer 2 that was observed was associated with a decrease in the distance between sublayers 2 and 4 in the patients with glaucoma.
This thinning was not observed in the healthy subjects.
Related:
“This finding corroborated the hypothesis that retinal ganglion cells with dendrites stratified in the off sublaminae may be damaged,” she commented.
According to the investigators, the IPL sublayer 2 seems to have high potential as a clinical glaucoma biomarker. Future studies of early-stage
--
Zeinab Rozita Ghassabi, MD
e:[email protected]
This article is adapted from Ghassabi’s presentation at the American Glaucoma Society’s virtual annual meeting. She has no financial interest in this subject matter.
Articles in this issue
over 4 years ago
Quest continues for topical treatments for posterior segmentover 4 years ago
Ophthalmology: A pioneer in the field of artificial intelligenceover 4 years ago
Research: Treatment targets steroid-induced OHTover 4 years ago
Targeting human retinal progenitor cell injections for RPover 4 years ago
AI predictive ability benefits from free text data in EHRsover 4 years ago
Home IOP monitoring may be aftereffect of COVID-19 pandemicover 4 years ago
Ventriloquist eye examover 4 years ago
Benefits of topography-guided treatments for irregular corneasover 4 years ago
Taking a step forward in glaucoma patient careNewsletter
Don’t miss out—get Ophthalmology Times updates on the latest clinical advancements and expert interviews, straight to your inbox.