Article

Personalized model learns patients’ glaucoma-progression dynamics

A novel glaucoma monitoring system is being developed to guide providers in establishing personalized monitoring schedules that would help them avoid missing significant progression in glaucoma suspects or patients with open-angle glaucoma, said Joshua D. Stein, MD, MS.

By Cheryl Guttman Krader

Las Vegas-A novel glaucoma monitoring system is being developed to guide providers in establishing personalized monitoring schedules that would help them avoid missing significant progression in glaucoma suspects or patients with open-angle glaucoma, Joshua D. Stein, MD, MS.

In an initial validation study using data from patients in the Advanced Glaucoma Intervention Study and the Collaborative Initial Glaucoma Treatment Study, the approach detected open-angle glaucoma progression 51% earlier, with 33% better accuracy, and 37% fewer tests than use of a fixed annual monitoring interval, said Dr. Stein, at Glaucoma 2015 during the annual meeting of the American Academy of Ophthalmology.

 

“We are now applying for an NIH RO1 grant to validate the model on a sample from the Ocular Hypertension Treatment Study and to enhance its inputs and outputs,” said Dr. Stein, associate professor of ophthalmology and visual sciences, University of Michigan, Ann Arbor.

The project is a collaboration between Dr. Stein and colleagues at the University of Michigan together with researchers at the University of Iowa and University of Pittsburgh, along with Ocular Hypertension Treatment Study investigators.

The system is designed to integrate information on IOP, visual fields, and changes in OCT to determine disease stability. And, it dynamically incorporates new information at successive visits with the historical information to help determine whether the treatment regimen should be changed.

 

“This is a personalized model that learns the patients’ unique disease-progression dynamics over time,” Dr. Stein said. “In addition it is flexible so that providers can tailor their monitoring based on characteristics of individual patients such as age and disease severity, and it can be easily integrated into the busy clinical setting.”

The system uses Kalman filtering-a forecasting and noise reduction technique useful for modeling complex, large systems, which was first used by NASA engineers to guide space flights to the moon. It combines a population-based understanding of disease evolution with the individual’s characteristics to predict values of key clinical parameters in the future.

 

“If we see a patient in our clinic who is a glaucoma suspect, we may be asked to be a soothsayer to figure out if years later, the visual field will continue to look normal or be changed,” he said. “Wouldn’t it be great to have some insider information.”

Unlike traditional approaches for identifying progression that compare the individual to a normative database, the Kalman filter generates personalized information and progressively learns about how the state changes over time.

In addition, it is able to extract measurement noise from the estimates.

“We all know how noisy visual field and IOP data can be,” Dr. Stein said.

 

Results of the initial validation study were published in 2014 [Schell GJ, et al. Ophthalmology. 2014;121:1539-1546].

Dr. Stein demonstrated the performance of the forecasting technique with examples from 3 patients that showed the visual field mean deviation predicted by the model was very close to the observed values.

 

 

 

Newsletter

Don’t miss out—get Ophthalmology Times updates on the latest clinical advancements and expert interviews, straight to your inbox.

Related Videos
(Image credit: Ophthalmology Times)  ASCRS 2025: Joaquin De Rojas, MD, leverages machine learning model to predict arcuate outcomes
(Image credit: Ophthalmology Times) ASCRS 2025: AnnMarie Hipsley, DPT, PhD, presents VESA for biomechanical simulation of presbyopia progression
Shehzad Batliwala, DO, aka Dr. Shehz, discussed humanitarian ophthalmology and performing refractive surgery in low-resource, high-risk areas at the ASCRS Foundation Symposium.
(Image credit: Ophthalmology Times) ASCRS 2025: Advancing vitreous care with Inder Paul Singh, MD
(Image credit: Ophthalmology Times) The Residency Report: Study provides new insights into USH2A target end points
Lisa Nijm, MD, says preoperative osmolarity testing can manage patient expectations and improve surgical results at the 2025 ASCRS annual meeting
At the 2025 ASCRS Annual Meeting, Weijie Violet Lin, MD, ABO, shares highlights from a 5-year review of cross-linking complications
Maanasa Indaram, MD, is the medical director of the pediatric ophthalmology and adult strabismus division at University of California San Francisco, and spoke about corneal crosslinking (CXL) at the 2025 ASCRS annual meeting
(Image credit: Ophthalmology Times) ASCRS 2025: Taylor Strange, DO, assesses early visual outcomes with femto-created arcuate incisions in premium IOL cases
(Image credit: Ophthalmology Times) ASCRS 2025: Neda Shamie, MD, shares her early clinical experience with the Unity VCS system
© 2025 MJH Life Sciences

All rights reserved.