Article

Scleral biomechanics control ocular growth in myopic eyes

The biomechanics of the sclera control eye growth in myopia, according to Neville McBrien, PhD, of the Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Australia.

The biomechanics of the sclera control eye growth in myopia, according to Neville McBrien, PhD, of theDepartment of Optometry and Vision Sciences, University of Melbourne, Melbourne, Australia.

With increased axial elongation in myopia, the sclera becomes thinner, especially at the posterior pole wherethe sclera, which is connective tissue composed predominately of extracellular matrix (collagen type 1), isbiomechanically weaker in myopic eyes compared with emmetropic eyes due to markedly decreased collagensynthesis, he explained.

Experimental studies showed that when scleral strips were subjected to stretching in one direction, the elasticproperties and the scleral "creep rate" increase markedly in eyes developing myopia, and conversely,significantly decrease in eyes recovering from myopia.

There is a contractile mechanism, however, at work in the eye as shown in an in vivo tree-shrew experiment inwhich IOP was increased to about 100 mm Hg. After an immediate increase in axial length, IOP that was elevatedfor 1 hour resulted in a gradual decrease in the axial length. The role of myofibroblasts as a mediator ofbiomechanical resistance to axial elongation has been demonstrated recently. The contractile response of scleralfibroblasts in primary culture is increased markedly by the addition of all isoforms of transforming growthfactor-beta. This increased contractile response is associated with the increased presence of alpha-smoothmuscle actin, a marker for myofibroblasts.

"When we look at the future of this research, we need to determine the contribution of myofibroblasts on scleralmechanical properties by looking at the pharmacokinetics involved in the myofibroblast contraction, utilizethree-dimensional culture systems to define quantitatively the contributions of the extracellular matrix andstress in cell phenotype, and develop matrix- and cell-based therapies for strengthening the scleral tissue asanother approach to therapy," Dr. McBrien said.

Newsletter

Don’t miss out—get Ophthalmology Times updates on the latest clinical advancements and expert interviews, straight to your inbox.

Related Videos
(Image credit: Ophthalmology Times) ASCRS 2025: Mark Lobanoff, MD, on making the move to office-based surgery
Barsha Lal, PhD, discusses the way low dose atropine affects accommodative amplitude and dynamics at the 2025 ARVO meeting
(Image credit: Ophthalmology Times) NeuroOp Guru: When eye findings should prompt neuroimaging in suspected neuro-Behcet disease
At the Association for Research in Vision and Ophthalmology (ARVO) meeting, Katherine Talcott, MD, a retina specialist at Cleveland Clinic, shared her findings on EYP-1901 (EyePoint Pharmaceuticals) in the phase 2 DAVIO study.
Dr. Jogin Desai, founder of Eyestem Research, discusses his research at the Association for Research in Vision and Ophthalmology.
(Image credit: Ophthalmology Times) ASCRS 2025: Michael Rivers, MD, shares his takeaways as a panelist at the inaugural SightLine event
(Image credit: Ophthalmology Times) ASCRS 2025: Karl Stonecipher, MD, on LASIK outcomes using an aspheric excimer laser for high myopia
John Tan talks about an emergency triage framework for retinal artery occlusion at the 2025 Association for Research in Vision and Ophthalmology (ARVO) meeting.
Dr Robert Maloney at the 2025 Controversies in Modern Eye Care meeting
Wendy Lee, MD, MS, at Controversies in Modern Eye Care 2025.
© 2025 MJH Life Sciences

All rights reserved.