Article

Genetic modification of trabecular meshwork explored

Gene transfer therapy is being studied to explore the pathophysiology of glaucomatous increases in IOP and identify new target genes and delivery mechanisms for treating glaucoma in the future, said Abbot Clark, PhD.

Fort Lauderdale, FL-Gene transfer therapy is being studied to explore the pathophysiology of glaucomatous increases in IOP and identify new target genes and delivery mechanisms for treating glaucoma in the future, said Abbot Clark, PhD.

“The trabecular meshwork is the major source of ocular outflow,” said Dr. Clark, of the North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth.

“It imparts a natural resistance to outflow that maintains a homeostatic IOP,” he said. “In glaucoma, defects in the trabecular meshwork lead to increased outflow resistance and elevated IOP.”

The trabecular meshwork is advantageous as a target because it is readily accessible for injections into the eye, and prolonged transgene expression with the adeno-associated virus can be achieved. Disadvantages include an induced ocular inflammatory response and limited tranfections with plasmids and liposomes, Dr. Clark said.

Models used for gene transfer to the trabecular meshwork have included cultured trabecular meshwork cells, anterior segment perfusion culture, and in vivo animal models. Vectors have also been used for the same purpose.

Despite its accessibility, the trabecular meshwork cells are difficult to transfect, but viral vectors can increase delivery, he noted.

“Gene delivery to the trabecular meshwork can be long-lasting with adenovirus,” he said.

A number of genes are thought to be involved in glaucoma pathogenesis, including TGFB2, mutant MYOC, SFRP1, GREM1, SAA2, and COCH, and these elevate the IOP. The pressure can be lowered by gene transfer to the trabecular meshwork, which suggests new targets for glaucoma therapy.

“The trabecular meshwork is important for regulating aqueous outflow and glaucomatous IOP increases,” Dr. Clark said. “Gene delivery to the trabecular meshwork is useful to understand outflow biology, validate pathogenic pathways, generate animal models that are useful to glaucoma, and develop new therapeutics.

“The future is very exciting,” he added. “Some challenges include the discovery of vectors and trabecular meshwork-specific promoters for more specific transduction of the trabecular meshwork and to determine which genes to target.”

For more articles in this issue of Ophthalmology Times Conference Briefclick here.

Newsletter

Don’t miss out—get Ophthalmology Times updates on the latest clinical advancements and expert interviews, straight to your inbox.

Related Videos
(Image credit: Ophthalmology Times) NeuroOp Guru: Using OCT to forecast outcomes in ethambutol optic neuropathy
(Image credit: Ophthalmology Times) Inside NYEE’s new refractive solutions center with Kira Manusis, MD
(Image credit: Ophthalmology Times) Dilsher Dhoot, MD, on the evolution of geographic atrophy therapy: where are we now?
(Image credit: Ophthalmology Times Europe) Anat Loewenstein, MD, shares insights on the real-world results of remote retinal imaging
(Image credit: Ophthalmology Times) Two-wavelength autofluorescence for macular xanthophyll carotenoids with Christine Curcio, PhD
(Image credit: Ophthalmology Times) FLIO and the brain: Making the invisible visible with Robert Sergott, MD
(Image credit: Ophthalmology Times) Structure-function correlates using high-res OCT images with Karl Csaky, MD, PhD
(Image credit: Ophthalmology Times) SriniVas Sadda, MD, on high-res OCT of atrophic and precursor lesions in AMD
(Image credit: Ophthalmology Times) Christine Curcio, PhD, shares histology update supporting review software and revised nomenclature for <3 μm OCT
© 2025 MJH Life Sciences

All rights reserved.