Article

ARVO LIVE: Luxa Biotechnology gives update on clinical trial of RPESC technology for dry AMD

Author(s):

In a presentation during the Association for Research in Vision and Ophthalmology (ARVO) Annual Meeting, being held at the Ernest N. Morial Convention Center in New Orleans, Luxa Biotechnology offered details of a clinical trial evaluating transplantation of cells derived from adult retinal pigmented epithelium stem cells to treat dry AMD.

Ernest N. Morial Convention Center

RPESC-RPE-4W is derived from an adult retinal pigmented epithelium stem cell (RPESC) that produces retinal pigmented epithelium (RPE) cell progeny. (Image Credit: Ernest N. Morial Convention Center)

Luxa Biotechnology today provided an update on the progress of a Phase 1/2a clinical trial evaluating transplantation of RPESC-RPE-4W to treat dry age-related macular degeneration (AMD) at the Association for Research in Vision and Ophthalmology (ARVO) Annual Meeting at the Ernest N. Morial Convention Center in New Orleans.

The panel discussion was moderated by Supriya Menezes, associate vice president of ophthalmology at Emmes, a global, full-service clinical research organization that hosted the session.

According to LuxaBio, RPESC-RPE-4W is derived from an adult retinal pigmented epithelium stem cell (RPESC) that produces retinal pigmented epithelium (RPE) cell progeny. The cell product being used in the clinical trial is a progenitor stage RPESC-RPE obtained after 4 weeks of differentiation (RPESC-RPE-4W).

The company noted the trial is being conducted at the University of Michigan Kellogg Eye Center.

“Our unique technology utilizing progenitor-stage RPE cells to replace those lost in dry AMD offers the potential to improve vision,” said Jeffrey Stern, MD, PhD, co-CEO of LuxaBio and co-founder of NSCI. “This trial represents a close collaboration of LuxaBio, the Kellogg Eye Center, the Cedars-Sinai Biomanufacturing Center, the National Eye Institute, and Emmes, our contract research organization and sponsor of the panel session at ARVO.”

Laboratory studies of RPESC-derived RPE cells demonstrated they could perform the critical repertoire of cell functions carried out by normal RPE cells, including trophic factor release and phagocytosis. Sub-retinal implantation in an animal model of retinal degeneration showed that RPESC-RPE-4W cells engraft into the RPE layer.

Transplanted RPESC-RPE-4W provided durable preservation of RPE cell functions and supported overlying photoreceptor cells, resulting in vision rescue that was maintained for the life of the animal. RPESC-RPE-4W has significant safety attributes in animal models, including lack of tumor formation.

Adult RPESC are obtained from eyes donated to eye banks. A single donor produces sufficient RPESC-RPE-4W cells for several hundred doses. The RPESC-RPE-4W cell product is manufactured at the Cedars Sinai Biomanufacturing Center in Los Angeles and the formulated doses are shipped to the clinical site for implantation.

The trial is co-sponsored by the National Eye Institute of the National Institutes of Health under a Regenerative Medicine Innovation Project cooperative agreement.

Newsletter

Don’t miss out—get Ophthalmology Times updates on the latest clinical advancements and expert interviews, straight to your inbox.

Related Videos
At the 2025 ASCRS Annual Meeting, Weijie Violet Lin, MD, ABO, shares highlights from a 5-year review of cross-linking complications
Maanasa Indaram, MD, is the medical director of the pediatric ophthalmology and adult strabismus division at University of California San Francisco, and spoke about corneal crosslinking (CXL) at the 2025 ASCRS annual meeting
(Image credit: Ophthalmology Times) ASCRS 2025: Taylor Strange, DO, assesses early visual outcomes with femto-created arcuate incisions in premium IOL cases
(Image credit: Ophthalmology Times) ASCRS 2025: Neda Shamie, MD, shares her early clinical experience with the Unity VCS system
Patricia Buehler, MD, MPH, founder and CEO of Osheru, talks about the Ziplyft device for noninvasive blepharoplasty at the 2025 American Society of Cataract and Refractive Surgeons (ASCRS) annual meeting
(Image credit: Ophthalmology Times) ASCRS 2025: Bonnie An Henderson, MD, on leveraging artificial intelligence in cataract refractive surgery
(Image credit: Ophthalmology Times) ASCRS 2025: Gregory Moloney, FRANZO, FRCSC, on rotational stability
Sheng Lim, MD, FRCOphth, discusses the CONCEPT study, which compared standalone cataract surgery to cataract surgery with ECP, at the 2025 ASCRS Annual Meeting.
(Image credit: Ophthalmology Times) ASCRS 2025: Steven J. Dell, MD, reports 24-month outcomes for shape-changing IOL
Alex Hacopian, MD, discusses a presbyopia-correcting IOL at the 2025 American Society of Cataract and Refractive Surgeons (ASCRS) annual meeting
© 2025 MJH Life Sciences

All rights reserved.