Article

Wavefront measurement methods discussed

The only constant in the relatively young life of refractive surgery has been change. Even now as our patients reap the rewards of decades of research in the form of customized wavefront ablation, currently unforeseen improvements are inevitable.

Editor’s Note: In the following article, Barrie Soloway, MD, describes why he believes the Zernike polynomial is the optimal methodology for describing wavefront error. In another report , the role of the Fou- rier-based fitting method as an alternative to Zernike polynomials is covered.

For instance, the Zernike polynomial's role as the optimal methodology for describing wavefront error has recently been challenged.

As this alternative makes inroads into the Zeitgeist of refractive surgery, a pair of questions must be answered. Why has Zernike reigned as the optimal choice for wavefront error measurement, and is the proposed use of Fourier an example of implementing change simply for the sake of change?

To illustrate this, the effects of higher-order aberrations on two sets of eyes were compared (Figure 1). The data in blue represent 100 normal eyes prior to any refractive treatment, and show that beyond the sixth order there is essentially no impact. The data in red represent 20 eyes with high levels of higher-order wavefront error.

Newsletter

Don’t miss out—get Ophthalmology Times updates on the latest clinical advancements and expert interviews, straight to your inbox.

Related Videos
(Image credit: Ophthalmology Times) NeuroOp Guru: Using OCT to forecast outcomes in ethambutol optic neuropathy
(Image credit: Ophthalmology Times) Inside NYEE’s new refractive solutions center with Kira Manusis, MD
(Image credit: Ophthalmology Times) Dilsher Dhoot, MD, on the evolution of geographic atrophy therapy: where are we now?
(Image credit: Ophthalmology Times Europe) Anat Loewenstein, MD, shares insights on the real-world results of remote retinal imaging
(Image credit: Ophthalmology Times) Two-wavelength autofluorescence for macular xanthophyll carotenoids with Christine Curcio, PhD
(Image credit: Ophthalmology Times) FLIO and the brain: Making the invisible visible with Robert Sergott, MD
(Image credit: Ophthalmology Times) Structure-function correlates using high-res OCT images with Karl Csaky, MD, PhD
(Image credit: Ophthalmology Times) SriniVas Sadda, MD, on high-res OCT of atrophic and precursor lesions in AMD
(Image credit: Ophthalmology Times) Christine Curcio, PhD, shares histology update supporting review software and revised nomenclature for <3 μm OCT
© 2025 MJH Life Sciences

All rights reserved.