Novel imaging technology provides real-time volumetric visualization for cataract and cornea surgeons
Swept-source microscope-integrated ocular coherence tomography is an investigational real-time imaging technique for monitoring and guiding anterior segment procedures.
Take-home message: Swept-source microscope-integrated ocular coherence tomography is an investigational real-time imaging technique for monitoring and guiding anterior segment procedures.
Reviewed by Terry Kim, MD
Durham, NC-Swept source microscope-integrated ocular coherence tomography (SS-MIOCT) is exciting new investigational technology for real-time intraoperative imaging of the cornea and anterior segment, said Terry Kim, MD.
The technology provides live, depth-based anatomic information that is expected to be highly useful for monitoring and guiding surgical procedures. The system is being developed by a team of researchers led by Joseph Izatt, PhD, professor of biomedical engineering and ophthalmology, and Cynthia Toth, MD, professor of ophthalmology and biomedical engineering, Duke University Eye Center, Durham, NC.
“Ophthalmic surgical microscopes provide a top-down view of the surgical field while OCT imaging provides direct depth information,” said Dr. Kim, professor of ophthalmology, Duke University School of Medicine. “Microscope integration of OCT allows for simultaneous surgery and imaging.
“SS-MIOCT adds a new dimension to the surgeon’s intraoperative view, and the results from preliminary evaluation of its clinical applications are very encouraging,” Dr. Kim added.
The system has an A-scan rate of 100 kHz, a volume rate of 2 Hz, an A/B-scan ratio of 500, resolution of 14x14x7.8 µm (x, y, z) and an imaging range of 12x12x7.4 mm (x, y, z). It provides a volume (three-dimensional; 3-D) image, a B-scan (2-D) image, and a summed voxel projection (top down) image. It is referred to as “4-D” imaging because the technology adds real-time as a fourth dimension to the volumetric image.
Internal server error