Article

New deep learning model helps the automated screening of common eye disorders

Author(s):

A new deep learning model that can identify disease-related features from images of eyes has been unveiled by a group of investigators from Tohoku University.

AI for the eye. The developed lightweight model precisely and rapidly detects image abnormalities related to diseases of the eye. The model is expected to provide accurate analysis on mobile devices/low CPU-GPU resource single board computers used in standalone self-monitoring devices. (Image courtesy of Parmanand Sharma, PhD)

AI for the eye. The developed lightweight model precisely and rapidly detects image abnormalities related to diseases of the eye. The model is expected to provide accurate analysis on mobile devices/low CPU-GPU resource single board computers used in standalone self-monitoring devices. (Image courtesy of Parmanand Sharma, PhD)

A new deep learning (DL) model that can identify disease-related features from images of eyes has been unveiled by a group of investigators from Tohoku University in Sendai, Japan.

According to the university, this 'lightweight' DL model can be trained with a small number of images, even ones with a high-degree of noise, and is resource-efficient, meaning it is deployable on mobile devices.

Details were published in the journal Scientific Reports.1

With many societies aging and limited medical personnel, DL model reliant self-monitory and tele-screening of diseases are becoming more routine. Yet, deep learning algorithms are generally task specific, and identify or detect general objects such as humans, animals, or road signs.

Identifying diseases, on the other hand, demands precise measurement of tumors, tissue volume, or other sorts of abnormalities. To do so requires a model to look at separate images and mark boundaries in a process known as segmentation. But accurate prediction takes greater computational output, rendering them difficult to deploy on mobile devices.

"There is always a trade-off between accuracy, speed and computational resources when it comes to DL models," noted Toru Nakazawa, MD, PhD, co-author of the study and professor at Tohoku University's Department of Ophthalmology. "Our developed model has better segmentation accuracy and enhanced model training reproducibility, even with fewer parameters - making it efficient and more lightweight when compared to other commercial softwares."

Nakazawa, Parmanand Sharma, PhD, Takahiro Ninomiya, MD, and students from the Department of Ophthalmology worked with professor Takayuki Okatani, PhD, from Tohoku University's Graduate School of Information Sciences to produce the model.

According to the university, using low resource devices, the investigators obtained measurements of the foveal avascular zone, a region with the fovea centralis at the center of the retina, to enhance screening for glaucoma.

"Our model is also capable of detecting/segmenting optic discs and hemorrhages in fundus images with high precision," Nakazawa explained.

In the future, the group is hopeful of deploying the lightweight model to screen for other common eye disorders and other diseases.

Reference

1 Sharma, P., Ninomiya, T., Omodaka, K. et al. A lightweight deep learning model for automatic segmentation and analysis of ophthalmic images. Sci Rep 12, 8508 (2022). https://doi.org/10.1038/s41598-022-12486-w

Newsletter

Don’t miss out—get Ophthalmology Times updates on the latest clinical advancements and expert interviews, straight to your inbox.

Related Videos
Lisa Nijm, MD, says preoperative osmolarity testing can manage patient expectations and improve surgical results at the 2025 ASCRS annual meeting
At the 2025 ASCRS Annual Meeting, Weijie Violet Lin, MD, ABO, shares highlights from a 5-year review of cross-linking complications
Maanasa Indaram, MD, is the medical director of the pediatric ophthalmology and adult strabismus division at University of California San Francisco, and spoke about corneal crosslinking (CXL) at the 2025 ASCRS annual meeting
(Image credit: Ophthalmology Times) ASCRS 2025: Taylor Strange, DO, assesses early visual outcomes with femto-created arcuate incisions in premium IOL cases
(Image credit: Ophthalmology Times) ASCRS 2025: Neda Shamie, MD, shares her early clinical experience with the Unity VCS system
Patricia Buehler, MD, MPH, founder and CEO of Osheru, talks about the Ziplyft device for noninvasive blepharoplasty at the 2025 American Society of Cataract and Refractive Surgeons (ASCRS) annual meeting
(Image credit: Ophthalmology Times) ASCRS 2025: Bonnie An Henderson, MD, on leveraging artificial intelligence in cataract refractive surgery
(Image credit: Ophthalmology Times) ASCRS 2025: Gregory Moloney, FRANZO, FRCSC, on rotational stability
Sheng Lim, MD, FRCOphth, discusses the CONCEPT study, which compared standalone cataract surgery to cataract surgery with ECP, at the 2025 ASCRS Annual Meeting.
(Image credit: Ophthalmology Times) ASCRS 2025: Steven J. Dell, MD, reports 24-month outcomes for shape-changing IOL
© 2025 MJH Life Sciences

All rights reserved.