Article

Molecular discovery could lead to prevention of geographic atrophy

A team of researchers has discovered a molecular mechanism implicated in geographic atrophy that may lead to the development of ways to prevent the condition.

Lexington, KY-A team of researchers has discovered a molecular mechanism implicated in geographic atrophy that may lead to the development of ways to prevent the condition.

The investigators’ article, “DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration,” was published online by the journal Nature on Feb. 6. The study also elaborates, for the first time, a disease-causing role for a large section of the human genome once regarded as non-coding “junk DNA.”

The team, led by University of Kentucky (UK) ophthalmologist Jayakrishna Ambati, MD, discovered that an accumulation of a toxic type of RNA, called Alu RNA, causes retinal cells to die in patients with geographic atrophy. In a healthy eye, a “DICER” enzyme degrades the Alu RNA particles.

“We discovered that in patients with geographic atrophy, there is a dramatic reduction of the DICER enzyme in the retina,” said Dr. Ambati, professor and vice chairman of the department of ophthalmology and visual sciences and holder of the Dr. E. Vernon and Eloise C. Smith Endowed Chair in Macular Degeneration Research at the UK College of Medicine. “When the levels of DICER decline, the control system is short-circuited and too much Alu RNA accumulates. This leads to death of the retina.”

Dr. Ambati’s team developed two potential therapies aimed at preventing geographic atrophy and demonstrated the efficacy of both approaches using laboratory models. The first involves increasing DICER levels in the retina by “over-expressing” the enzyme. The second involves blocking Alu RNA using an “anti-sense” drug that binds and degrades this toxic substance. UK has filed patent applications for both technologies, and Dr. Ambati’s group is preparing to start clinical trials by the end of this year.

Newsletter

Don’t miss out—get Ophthalmology Times updates on the latest clinical advancements and expert interviews, straight to your inbox.

Related Videos
Lisa Nijm, MD, says preoperative osmolarity testing can manage patient expectations and improve surgical results at the 2025 ASCRS annual meeting
At the 2025 ASCRS Annual Meeting, Weijie Violet Lin, MD, ABO, shares highlights from a 5-year review of cross-linking complications
Maanasa Indaram, MD, is the medical director of the pediatric ophthalmology and adult strabismus division at University of California San Francisco, and spoke about corneal crosslinking (CXL) at the 2025 ASCRS annual meeting
(Image credit: Ophthalmology Times) ASCRS 2025: Taylor Strange, DO, assesses early visual outcomes with femto-created arcuate incisions in premium IOL cases
(Image credit: Ophthalmology Times) ASCRS 2025: Neda Shamie, MD, shares her early clinical experience with the Unity VCS system
Patricia Buehler, MD, MPH, founder and CEO of Osheru, talks about the Ziplyft device for noninvasive blepharoplasty at the 2025 American Society of Cataract and Refractive Surgeons (ASCRS) annual meeting
(Image credit: Ophthalmology Times) ASCRS 2025: Bonnie An Henderson, MD, on leveraging artificial intelligence in cataract refractive surgery
(Image credit: Ophthalmology Times) ASCRS 2025: Gregory Moloney, FRANZO, FRCSC, on rotational stability
Sheng Lim, MD, FRCOphth, discusses the CONCEPT study, which compared standalone cataract surgery to cataract surgery with ECP, at the 2025 ASCRS Annual Meeting.
(Image credit: Ophthalmology Times) ASCRS 2025: Steven J. Dell, MD, reports 24-month outcomes for shape-changing IOL
© 2025 MJH Life Sciences

All rights reserved.