Article

Diffusion through aging Bruch's membrane studied

Fort Lauderdale, FL-Studies evaluating age-related changes in the diffusional status of macromolecular transport processes across Bruch's membrane may provide new insight into the pathophysiology of age-related macular degeneration (AMD) and suggest new targets for intervention, said Ali A. Hussain, PhD, at the annual meeting of the Association for Research in Vision and Ophthalmology.

Dr. Hussain reviewed findings from studies examining the transportation pathway through Bruch's membrane, experiments assessing macromolecular diffusion rates, and the usefulness of pore theory in understanding the molecular mechanisms of the aging process. The research was performed at King's College, London, by Dr. Hussain, who is a senior scientist in the department of ophthalmology, and John Marshall, PhD, who is a professor of ophthalmology.

"When thin layers of the ICL were removed with the excimer laser, transport resistance through Bruch's membrane was unchanged. However, removal of the entire layer resulted in loss of all resistance through the system, and subsequent electron microscopy studies showed the resistance barrier lies in the ICL region in close proximity to the elastin layer of Bruch's membrane (Figure 1)," he explained.

Subsequent studies sought to analyze factors affecting the exclusion limits of Bruch's membrane, which provides a measure of pore radii and flux rates. Quantification of the rate of diffusion of dextrans of various molecular weights (4.4 to 150 kDa) showed there were no topographic- or age-related variations in exclusion limit. However, molecular transport measurements using a dextran smaller than the membrane's size exclusion limit showed a sharp, age-related decline in flux rate in the macular region and a significant, but more modest decrease in the periphery (Figure 2).

Newsletter

Don’t miss out—get Ophthalmology Times updates on the latest clinical advancements and expert interviews, straight to your inbox.

Related Videos
(Image credit: Ophthalmology Times Europe) Anat Loewenstein, MD, shares insights on the real-world results of remote retinal imaging
(Image credit: Ophthalmology Times) Two-wavelength autofluorescence for macular xanthophyll carotenoids with Christine Curcio, PhD
(Image credit: Ophthalmology Times) FLIO and the brain: Making the invisible visible with Robert Sergott, MD
(Image credit: Ophthalmology Times) Structure-function correlates using high-res OCT images with Karl Csaky, MD, PhD
(Image credit: Ophthalmology Times) SriniVas Sadda, MD, on high-res OCT of atrophic and precursor lesions in AMD
(Image credit: Ophthalmology Times) Christine Curcio, PhD, shares histology update supporting review software and revised nomenclature for <3 μm OCT
1 expert is featured in this series.
1 expert is featured in this series.
1 expert is featured in this series.
1 expert is featured in this series.
© 2025 MJH Life Sciences

All rights reserved.