ARVO 2016 meeting paves path for personalized medicine
Emerging trends and hot topics in eye and vision research filled the sessions at this year’s meeting of the Association for Research in Vision and Ophthalmology.
From Ora Staff Reports
Seattle-The growing interest in personalized medicine-a main focus at this year’s meeting of the Association for Research in Vision and Ophthalmology (ARVO)-was reflected in a large number of presentations on genetic approaches to therapy.
Many of these featured applications of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology. CRISPR allows for directed, specific “splicing” of disease-associated genes.
Recap:
For example, Stone et al. investigated the use of CRISPR-based genomic editing for the treatment of CEP290-associated Leber’s congenital amaurosis. This study demonstrated that CRISPR-based genome editing deleted the most common human mutation in CEP290, suggesting a clinically meaningful way to restore CEP290 function without the risk of overexpression toxicity (Stone et al., E-Abstract 1838).
The use of CRISPR in the treatment of retinal degenerative diseases, such as retinitis pigmentosa, was also investigated. Wahlin et al. developed genetically modified, human retinal cell-reporters using CRISPR technology. Using this approach, they tracked retinal development patterns, providing clues that could potentially increase the efficiency and pace of therapeutic photoreceptor generation (Wahlin et al., E-Abstract 2820).
Visit:
Several other presentations focused on traditional gene therapy through the use of viruses as delivery/vector systems (e.g., adeno-associated viruses or lentiviruses). Lentiviral vector expressing endostatin and angiostatin (RetinoStat) was administered by subretinal injection to 21 patients with advanced age-related macular degeneration (AMD) and poor anti-vascular endothelial growth factor (VEGF) response. The lentiviral vector safely delivered the two transgenes into aqueous fluid (Lauer A et al., ARVO E-Abstract 4719). Clinical benefits included visual acuity stabilization and a reduction in vascular leakage.
Internal server error