• COVID-19
  • Biosimilars
  • Cataract Therapeutics
  • DME
  • Gene Therapy
  • Workplace
  • Ptosis
  • Optic Relief
  • Imaging
  • Geographic Atrophy
  • AMD
  • Presbyopia
  • Ocular Surface Disease
  • Practice Management
  • Pediatrics
  • Surgery
  • Therapeutics
  • Optometry
  • Retina
  • Cataract
  • Pharmacy
  • IOL
  • Dry Eye
  • Understanding Antibiotic Resistance
  • Refractive
  • Cornea
  • Glaucoma
  • OCT
  • Ocular Allergy
  • Clinical Diagnosis
  • Technology

ARMOR study: Keeping pace with microbial resistance to antibiotics

Publication
Article
Digital EditionOphthalmology Times: October 1, 2021
Volume 46
Issue 16

Ongoing nationwide study looks at in vitro antibiotic resistance among isolates.

The Antibiotic Resistance Monitoring in Ocular Microorganisms (ARMOR) surveillance study has identified high levels of in vitro antibiotic resistance among ocular staphylococcal and pneumococcal pathogens, resistance that may affect treatment success


Reviewed by Penny Asbell, MD, FACS, MBA

The Antibiotic Resistance Monitoring in Ocular Microorganisms (ARMOR) surveillance study has identified high levels of in vitro antibiotic resistance among ocular staphylococcal and pneumococcal pathogens, resistance that may affect treatment success, according to Penny Asbell, MD, FACS, MBA, director of the Hamilton Eye Institute at the University of Tennessee Health Science Center.

The ARMOR study is an ongoing nationwide study examining in vitro antibiotic resistance among isolates that have been collected from ocular infections.

Between 2009 and 2018, 6091 ocular isolates were collected; specifically, Staphylococcus aureus (n = 2189), coagulase-negative staphylococci (n = 1745), Streptococcus pneumoniae (n = 590), Pseudomonas aeruginosa (n = 767), and Haemophilus influenzae (n = 780).

Related: VA and visual function go the way of ocular inflammation

The ocular isolates were obtained at the participating study sites nationwide and sent to a central laboratory for confirmation of bacterial identity and susceptibility testing.

The investigators also carried out a literature search for susceptibility data on the bacteria from ocular infections reported in other studies for comparison with 10-year ARMOR findings, according to Asbell.

According to investigators, the key findings from ARMOR include the following:

  • Staphylococci were resistant to azithromycin (60%-61%), methicillin (35%-51%), and ciprofloxacin (33%-34%).
  • S pneumoniae isolates were resistant to azithromycin and penicillin (32% and 36%, respectively). P aeruginosa and H influenzae resistance was low.
  • Multidrug resistance, defined as resistance to at least 1 antimicrobial drug in 3 or more drug classes, was especially prevalent among methicillin-resistant staphylococci.

A bright spot is that the prevalence of methicillin-resistant S aureus may be declining after reaching a peak from 2005 to 2015.

Related: Research: Similar endophthalmitis rates for generic, branded topical antibiotics

Based on their findings, the investigators concluded that “the ARMOR study showed high levels of in vitro antibiotic resistance among ocular staphylococcal and pneumococcal pathogens and were largely representative of those reported in smaller US surveillance studies.”

The investigators also suggest that surveillance data are relevant in that resistance to antibiotics may foretell treatment failure.

Penny Asbell, MD, FACS, MBA
E: pasbell@uthsc.edu
This article is adapted from Asbell’s presentation at the Women in Ophthalmology 2021 Summer Symposium. The ARMOR study is sponsored by Bausch + Lomb. Asbell was a consultant for Bausch Health US, LLC, for Grand Rounds presentation to Bausch & Lomb but has received no compensation for participation in this study.

Related Videos
EyeCon Co-chair Oluwatosin U. Smith, MD: Passion for Research and Education Drives Her Commitment to Ophthalmology
Video 3 - "Approaching Asymptomatic Cases with Risk Factors"
Video 2 - "Do Dry Eye Diagnostics Change the Management of Dry Eye?"
Dr. SriniVas Sadda Discusses Vision for ARVO as New President: Collaboration, Funding Challenges, and Impact of Annual Meetings
Deb Ristvedt, DO's CIME 2024 Talk Highlights Innovations in Treating Glaucoma via the Trabecular Meshwork
Dr. Inder Paul Singh's Insights: Improving Glaucoma Outcomes with Early Intervention and Reduced Medication
CIME 2024: Kelsey Roelofs, MD, details collaborative strategies for the management of thyroid eye disease
CIME 2024: Diagnostic tips and treatments for managing Demodex blepharitis
Highlights from the 18th Annual Controversies in Modern Eye Care Symposium: Arjan Hura, MD, on Refractive Surgery, Retina Care, and Record Attendance
© 2024 MJH Life Sciences

All rights reserved.