
Correlation of Retinal Thickness and Perfusion Metrics with Renal Function in Sickle Cell Retinopathy Using Optical Coherence Tomography (OCT) and OCT-Angiography

Financial Disclosures

I have no relevant financial disclosures

My Role In This Research

- Conception and design of the work/project
- ✓ Acquisition of data
- Manalysis and interpretation of data
- ☑ Creation and/or critical review of the presentation

Sickle Cell Disease

- The most common molecular genetic disease
 - Mutation in beta globin gene of hemoglobin
 - Associated with African (and Hispanic) ancestry

- Mutation confers genetic advantage:
 - Protects against Plasmodium falciparum malaria
 - Example of balanced polymorphism
 - Homozygote sickle poor survival from sickle cell disease
 - Normal Hgb poor survival from prevalent malaria
 - Sickle Hgb + normal Hgb = better survival

Sickle Cell Disease

- Over 100,000 affected in the United States¹
 - About 1:13 African-Americans born with sickle cell trait
 - About 1:365 African-Americans born with sickle cell disease
 - About 1:16,300 Hispanic-Americans born with sickle cell trait
- Sickle cell disease is deadly:²
 - 11% have clinically apparent strokes by age 20
 - 24% have clinically apparent strokes by age 45

The Conjunctival Sign of Sickle-Cell Disease

DAVID PATON, M.D., Baltimore

ARCHIVES OF OPHTHALMOLOGY Vol. 66, July, 1961

Results of	Slit-I Vessel	Lamp s in	Exa 116	mination Black P	of Conj atients	iunctival
Hematology Clinic Patients Diagnosis Unknown				Referred Patients, Diagnosis Known or Suspected		
Cap	pillaries				Capillaires	
Hgb Type	-	+	?	_	+	?
A (normal)	61			42	\perp	
S-S S-C		19 4			7 4	2
S-A	8		2	2		
S.F	1					
S-That	1					
C-A	-1					
F-A			1			

Ocular Findings and Sickle Cell Burden

The Conjunctival Sign in Sickle Cell Anemia

A Relationship With Irreversibly Sickled Cells

Graham R. Serjeant, MB, MRCP; Beryl E. Serjeant, FIMLT; and Patrick I. Condon, MCh, FRCS

Irreversibly Sickled Cell (ISC) Counts By Degree of Conjunctival Vessel Abnormality

Grade of Conjunctival Vessel Abnormality	No. of Patients	Male	Female	Mean Age (yr)	iSC (Mean ± SD)
0	2	2	0	11.5	1.0 ± 1.4
1	12	4	8	29.2	8.6 ± 4.9
2	14	9	5	19.4	10.6 ± 4.4
3	21	7	14	24.7	12.3 ± 5.5
4	17	8	9	24.3	18.5 ± 6.4

OCT-Angiography

- Non-invasive, dye-less angiography
 - Superficial, intermediate, and deep plexus visualization
- Clinical Applications:
 - Foveal avascular zone (FAZ) visualization
 - Non-perfusion
 - Microvascular changes and neovascularization
- Quantitative analysis of retinal microvasculature:
 - FAZ area
 - vascular density and vessel complexity

- Correlation of microvascular metrics with systemic disease
 - Vascular density, non-perfused area, fractals
 - Potential use of OCT-Angiography (OCTA) as a biomarker

- Correlation of microvascular metrics with systemic disease
 - Vascular density, non-perfused area, fractals
 - Potential use of OCT-Angiography (OCTA) as a biomarker
 - Myocardial Infarction

The EYE-MI Pilot Study: A Prospective Acute Coronary Syndrome Cohort Evaluated With Retinal Optical Coherence Tomography Angiography

Louis Arnould, ¹⁻³ Charles Guenancia, ^{4,5} Arthur Azemar, ⁴ Guillaume Alan, ⁴ Stéphane Pitois, ⁴ Florence Bichat, ⁴ Marianne Zeller, ⁴ Pierre-Henry Gabrielle, ^{1,3} Alain M. Bron, ^{1,3} Catherine Creuzot-Garcher, ^{1,3} and Yves Cottin ^{4,5}

- Correlation of microvascular metrics with systemic disease
 - Vascular density, non-perfused area, fractals
 - Potential use of OCT-Angiography (OCTA) as a biomarker
 - Myocardial Infarction
 - Alzheimer's Disease

Evaluation of optical coherence tomography angiographic findings in Alzheimer's type dementia

Mehmet Bulut,¹ Fatma Kurtuluş,² Onursal Gözkaya,³ Muhammet Kazım Erol,¹ Ayşe Cengiz,¹ Melih Akıdan,¹ Aylin Yaman²

- Correlation of microvascular metrics with systemic disease
 - Vascular density, non-perfused area, fractals
 - Potential use of OCT-Angiography (OCTA) as a biomarker
 - Myocardial Infarction
 - Alzheimer's Disease
 - Sickle Cell Disease

Study Purpose

- To evaluate retinal thickness and perfusion metrics using OCT and OCT Angiography (OCTA) in sickle cell retinopathy and determine their relationship to renal function
- To evaluate retinal microvascular metrics using OCTA in sickle cell retinopathy in relation to visual acuity

Methods

- 79 eyes in 44 patients with sickle cell disease
- OCT and OCT-angiography performed using Zeiss Cirrus HD-OCT 5000 (Carl Zeiss Meditec, Inc., Dublin CA, USA)
 - OCT metrics included average cube thickness and volume, average ganglion cell layer (GCL) thickness, and central subfield thickness (CST) per ETDRS grid using standard 512x128 scans
 - ImageJ (Bethesda, MD) post-capture processing to determine foveal avascular zone area (FAZ), vessel density (VD), and vessel complexity (VC) at both the superficial (sFAZ, sVD, sVC) and deep (sFAZ, dVD, dVC) plexuses using 3x3 mm scans
- Statistical correlation of OCT and OCTA metrics with renal function (serum creatinine) and visual acuity (VA)

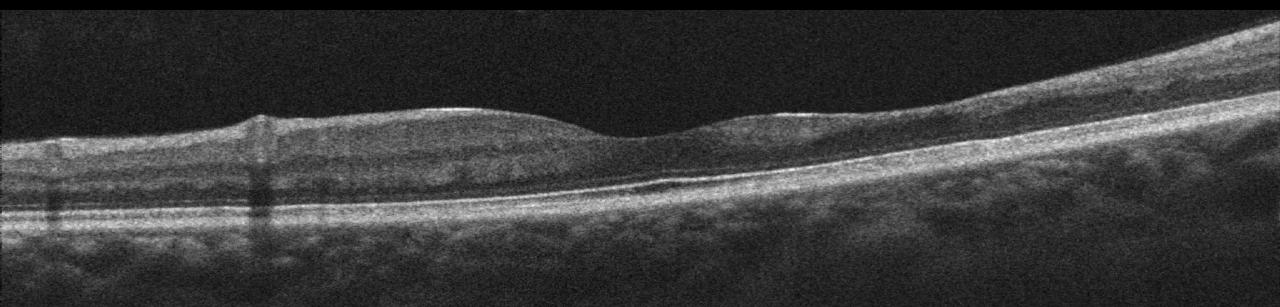
Results

Patient Demographics

- 44 African-American patients were included:
 - Mean Age = 30 years (median: 27, range: 15-65)
 - 19 Males and 25 females
- Sickle Cell Type:
 - Sickle Cell Trait = 0
 - Sickle Cell **SS** = **23**
 - Sickle Cell SC = 17
 - Sickle Cell S-thal = 4

Results Medical History

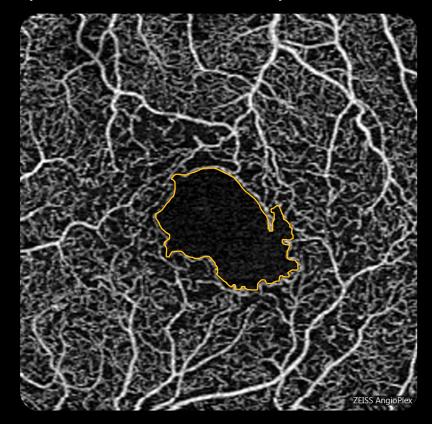
- Diabetes mellitus = 2
- Hypertension = 10
- Stroke = 10
- Avascular necrosis = 20
- History of crisis year prior to OCTA = 23
 - Mean number of incidents: 6.2 (median: 3, range: 1-26)

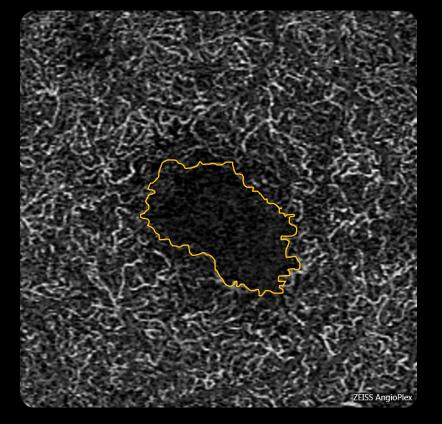

Results

Clinical Features

- Visual Acuity:
 - Mean logMAR = 0.1 (median = 0, range: 0-1)
 - 20/20 to 20/25 = 68 eyes (86%)
 - 20/30 to 20/40 = 9 eyes (12%)
 - 20/50 to 20/200 = 2 eyes (2%)
- Intraocular Pressure:
 - Mean IOP = 16mmHg (median: 16, range: 10-22)

Results *OCT Features*

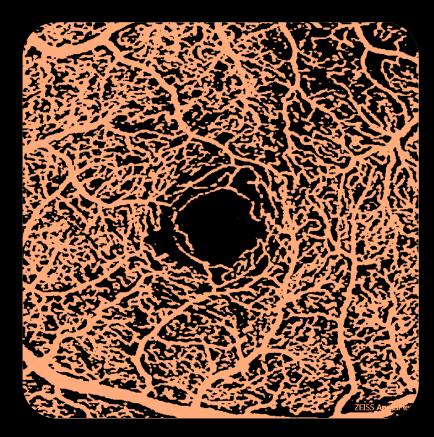

- Mean CST = 233μm (median: 234, range: 154-299)
- Mean cube volume = 9.8mm³ (median: 9.9, range: 6.7-11.4)
- Mean cube thickness = 273μm (median: 275, range: 186-318)
- Mean GCL thickness = $79\mu m$ (median: 81, range: 12-106)

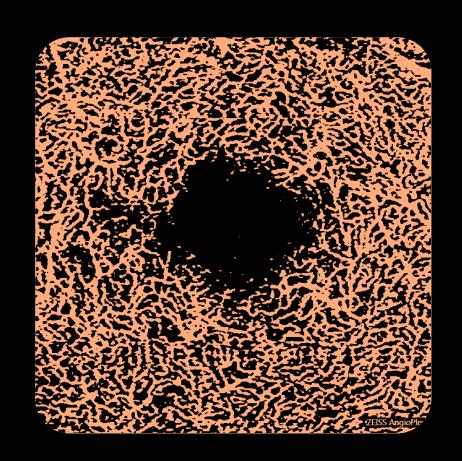

Results - OCTA Features

Mean FAZ area (median, range):

Superficial Plexus = 0.398mm² (0.408, 0.106-0.826)

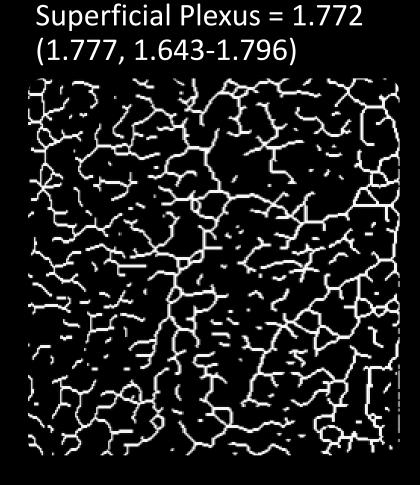
Deep Plexus = 0.578mm² (0.566, 0.198-1.196)

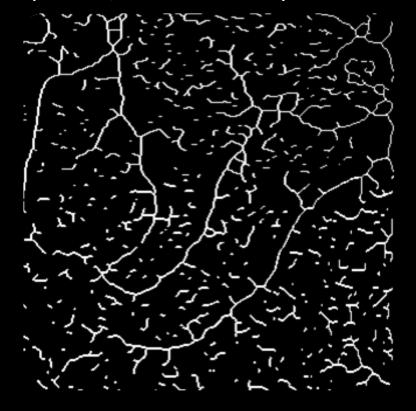



Results - OCTA Features

Mean Vessel Density (median, range):

Superficial Plexus = 51% (52, 24-60)


Deep Plexus = 47% (47, 37-53)



Results - OCTA Features

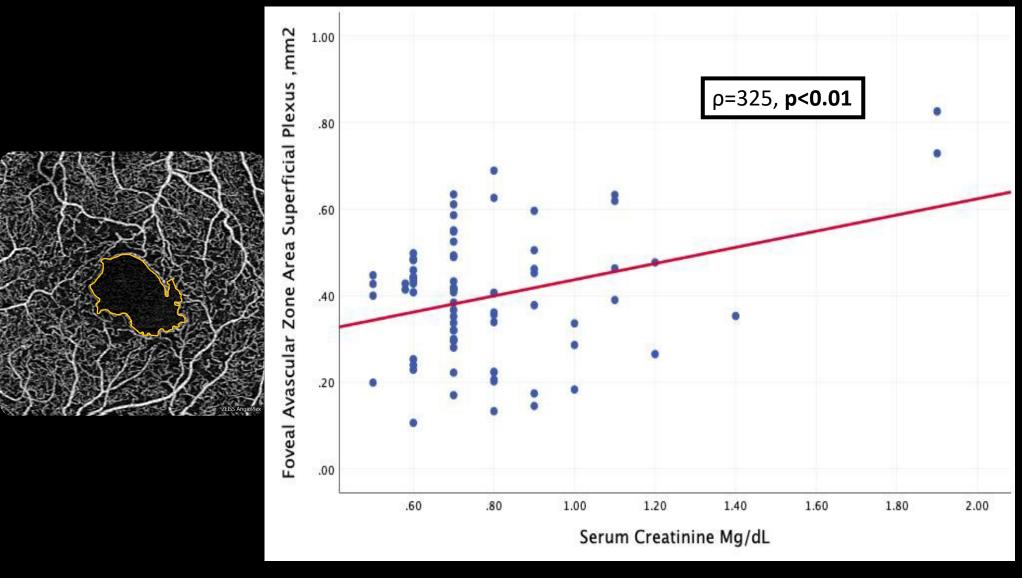
Mean Fractal Dimension (median, range):

Deep Plexus = 1.773 (1.774, 1.726-1.801)

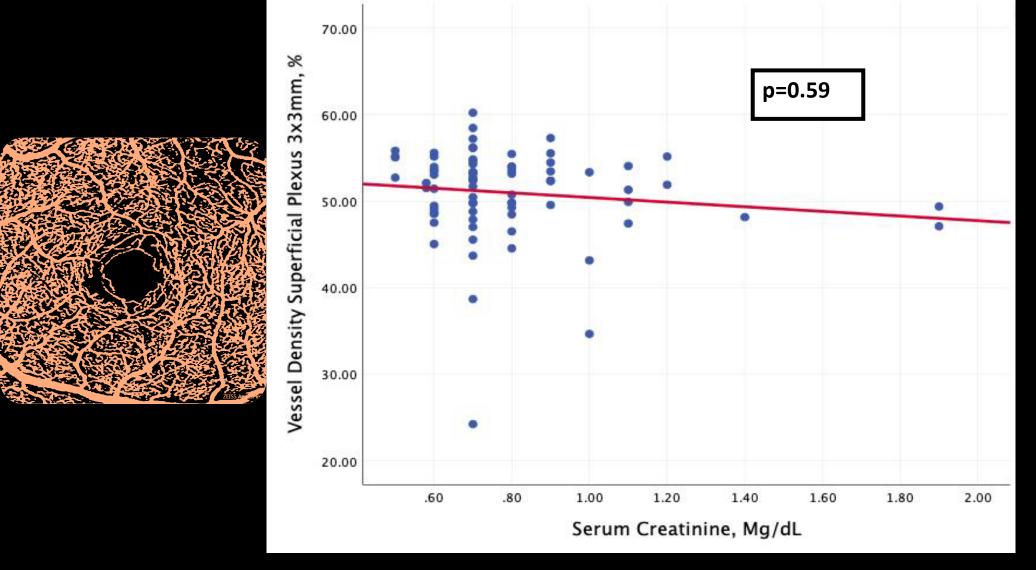
Results *Renal Function*

GFR	GFR	Terms	
category	(mL/min/1.732 m ²)		
GI	≥90	Normal or high	
G2	60-89	Mildly decreased	
G3a	45-59	Mildly to moderately	
		decreased	
G3b	30-44	Moderately to	
		severely decreased	
G4	15-29	Severely decreased	
G5	<15	Kidney failure	
Abbreviations:	CKD, chronic kidney disease; GFR, §	glomerular filtration rate.	

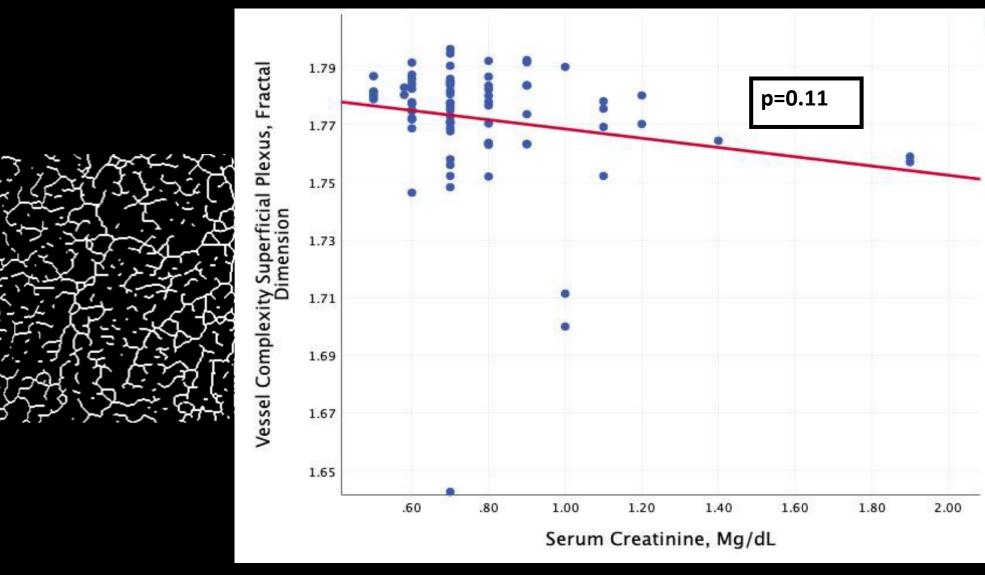
ashar K. Egan BM. Relationship between chronic kidney disease and metabolic syndrome: current per

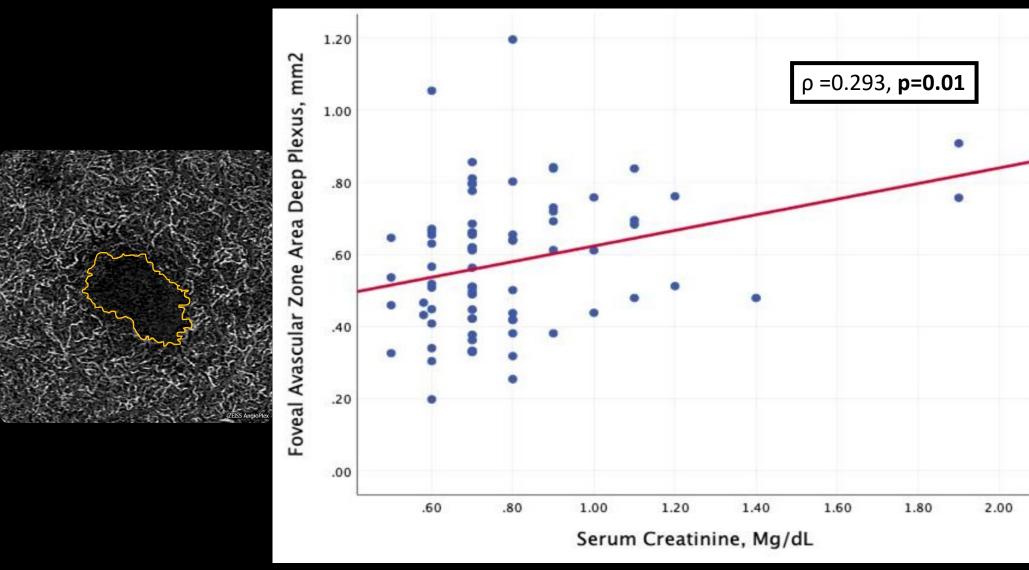

Nashar K, Egan BM. Relationship between chronic kidney disease and metabolic syndrome: current perspectives. Diabetes Metab Syndr Obes. 2014 Sep 18;7:421-35.

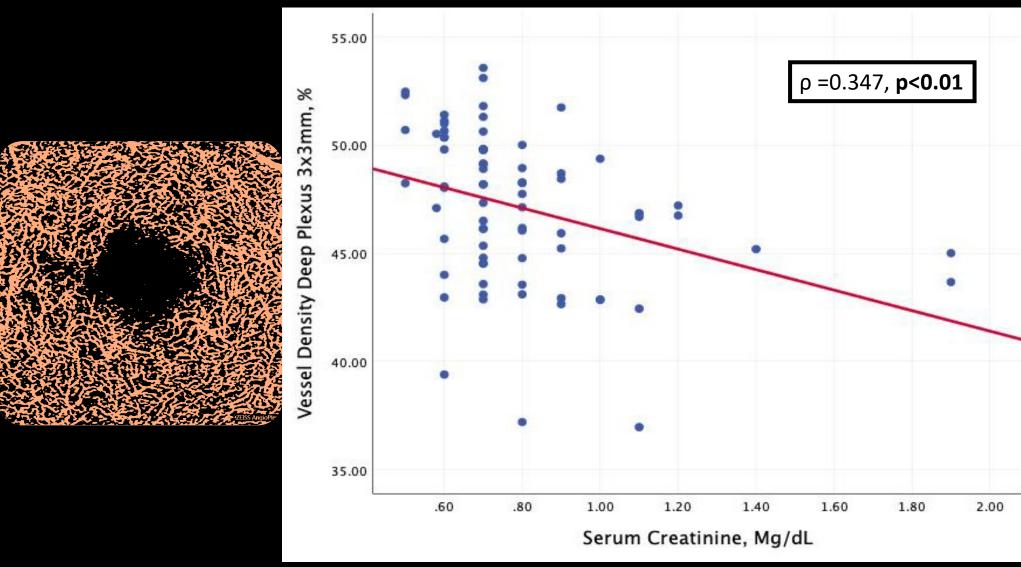
Results

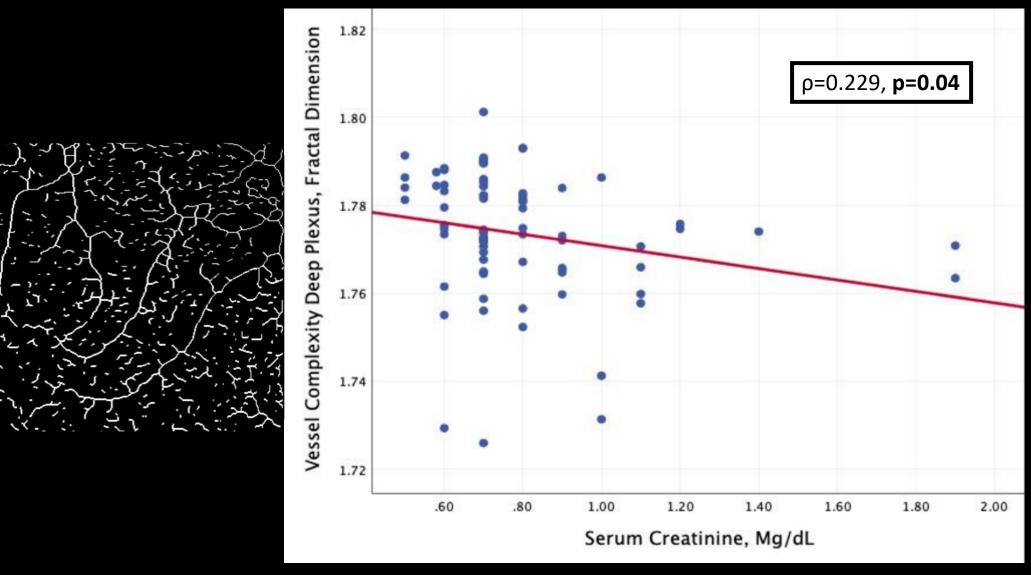

Renal Function

- Estimated Glomerular Filtration Rate (eGFR):
 - G1/G2 (>59) = 71 (89%)
 - G3a (mild to moderately decreased) = 1 (1%)
 - G3b (moderately to severely decreased) = 1 (1%)
 - Not tested due to age <18 years = 6 (7%)
- Mean serum creatinine (median, range):
 - 0.79mg/dL (0.7, 0.5-1.9)


Results Superficial Plexus FAZ – Renal Function Correlation

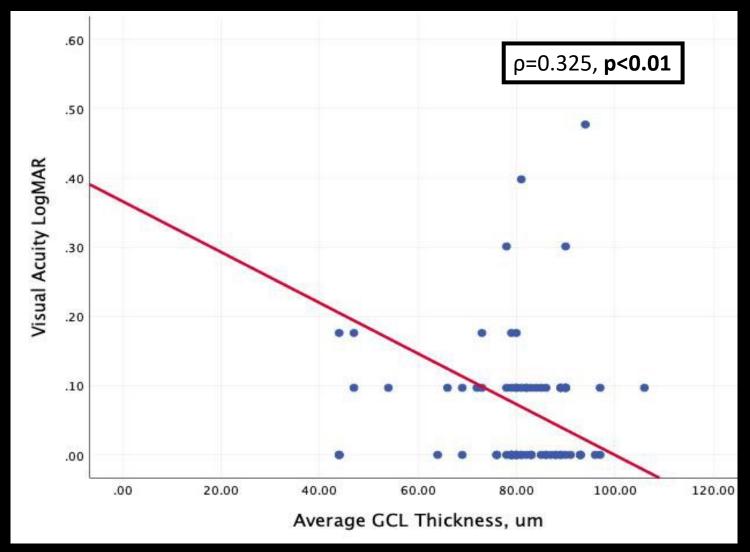

Results Superficial Plexus VD – Renal Function Correlation


Results Superficial Plexus FD – Renal Function Correlation


Results Deep Plexus FAZ— Renal Function Correlation

Results Deep Plexus VD— Renal Function Correlation

Results Deep Plexus FD – Renal Function Correlation

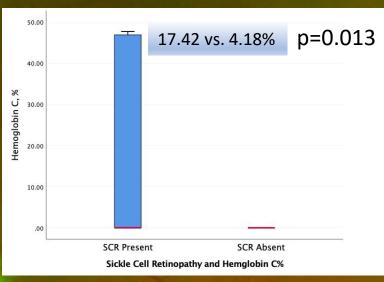

Results OCT

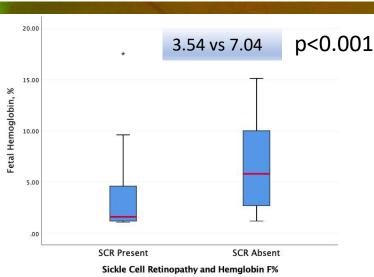
• no statistically significant correlation between serum biomarkers and any of the OCT metrics.

Results

OCT – LogMAR Vision Correlation

- Superficial Plexus:
 - GCL average thickness and LogMAR.

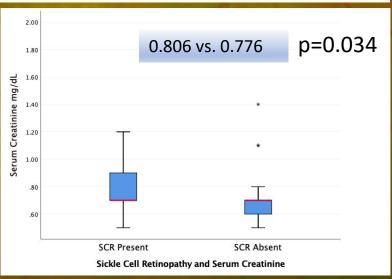



Results OCTA – LogMAR Vision Correlation

- Superficial Plexus:
 - sFAZ and logMAR: p<0.01
 - sVD and logMAR: p<0.01
 - sVC and logMAR: p<0.01
- Deep Plexus:
 - dFAZ and logMAR: p=0.28
 - dVD and logMAR: p=0.11
 - dVC and logMAR: p=0.07

Hemoglobin Hemoglobin

Subgroup Analysis Sickle Cell Retinopathy (SCR) Vs. No SCR



Visual Acuity

reatinir

O.11 vs. 0.04 p=0.018 * * SCR Present Sickle Cell Retinopathy And Visual Acuity

Summary

- Correlation between retinal microvascular parameters and renal function in sickle cell disease
 - No correlation of sVD and sVC with serum creatinine
 - Correlation of sFAZ, dFAZ, dVD, and dVC with serum creatinine
- Correlation between logMAR visual acuity and sFAZ, sVD, and sVC but not with deep plexus parameters
- Patients with evidence of SCR demonstrated elevated Cr and HbS, and decreased HbF

Thank you for your kind attention